Skip navigation links
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

E

EAST - Static variable in class org.ai_heuristic.util.TextConst
 
EFC - Static variable in class org.ai_heuristic.util.AiHeuristicConst
The exponential factor c value
EFN - Static variable in class org.ai_heuristic.util.AiHeuristicConst
The exponential factor n value
ELEMENT - Static variable in class org.ai_heuristic.util.AiTypeConst
Defines an Element class parameter type
ENDJAR - Static variable in class org.ai_heuristic.util.TextConst
Defines a file prefix
Entropy - Class in org.ai_heuristic.algo.prob
This class implements a discrete Entropy evaluation.
Entropy() - Constructor for class org.ai_heuristic.algo.prob.Entropy
Create a new instance of Entropy.
Entropy(String) - Constructor for class org.ai_heuristic.algo.prob.Entropy
Create a new instance of Entropy.
EQ - Static variable in class org.ai_heuristic.util.AiHeuristicConst
This defines the equal to comparison
equals(Object) - Method in class org.ai_heuristic.algo.cluster.som.topology.Coords
Indicates whether some other object is "equal to" Coords class..
EQUALS - Static variable in class org.ai_heuristic.util.TextConst
This defines the equal to comparison
EuclideanDistance - Class in org.ai_heuristic.functs.metric
This measures the Euclidean Distance between two lists of objects.
EuclideanDistance() - Constructor for class org.ai_heuristic.functs.metric.EuclideanDistance
Create a new instance of EuclideanDistance.
EuclideanDistance(String) - Constructor for class org.ai_heuristic.functs.metric.EuclideanDistance
Create a new instance of EuclideanDistance.
EUCLIDEANFUNCTION - Static variable in class org.ai_heuristic.util.AiHeuristicConst
 
evalMetric - Variable in class org.ai_heuristic.algo.AlgorithmCompare
The metric to calculate the distance with.
evalMetric - Variable in class org.ai_heuristic.algo.AlgorithmLearn
The metric to calculate the distance with
evaluate(MetricDataset) - Method in class org.ai_heuristic.algo.classify.InformationGain
Evaluate the resulting IG after splitting the datasets over each attribute (column variable), apart from the decision attribute or column that the IG is being calculated for.
evaluate(T) - Method in class org.ai_heuristic.algo.classify.Markov
Return a value based on the function evaluation.
evaluate(MetricDataset) - Method in class org.ai_heuristic.algo.classify.Markov
Evaluate the dataset and return the result.
evaluate(MetricDataset) - Method in class org.ai_heuristic.algo.classify.VarGain
Evaluate a cohesive value, similar to an entropy value, for the combined variable list and count.
evaluate(MetricDataset) - Method in class org.ai_heuristic.algo.cluster.CompleteLinkCluster
Calculate the closest dataset from datasets to the parameter dataset.
evaluate(MetricDataset) - Method in class org.ai_heuristic.algo.cluster.NearestNeighbour
Calculate the closest ksize data points from each pont to the other and use this to cluster.
evaluate(MetricDataset) - Method in class org.ai_heuristic.algo.cluster.SingleLinkCluster
Calculate the closest dataset from the input list to the parameter dataset.
evaluate(MetricDataset) - Method in class org.ai_heuristic.algo.prob.Entropy
Evaluate the comparison of a list of values for the same element and return the result.
evaluate(MetricDataset, MetricDataset) - Method in class org.ai_heuristic.algo.prob.KullbackLeibler
Evaluate the comparison of the two vectors of data and return the result.
evaluate(double[], double[]) - Method in class org.ai_heuristic.algo.prob.KullbackLeibler
Evaluate the Kullback-Leibler divergence going from q to p.
evaluate(Object) - Method in class org.ai_heuristic.algo.prob.NGram
Return a value based on the function evaluation.
evaluate(MetricDataset, MetricDataset) - Method in class org.ai_heuristic.algo.prob.NGram
Evaluate the comparison of the two vectors of data and return the result.
evaluate(String, String) - Method in class org.ai_heuristic.algo.prob.NGram
Return a value based on the function evaluation.
evaluate(MetricDataset) - Method in interface org.ai_heuristic.def.FunctionDef
Evaluate the objects stored in the dataset.
evaluate(MetricDataset, MetricDataset) - Method in interface org.ai_heuristic.def.FunctionMetricDef
Evaluate the comparison between the two datasets and return the result.
evaluate(String, String, String) - Method in class org.ai_heuristic.eval.MathString
Evaluate the expression and return true if true.
evaluate(Integer, Integer, String) - Method in class org.ai_heuristic.eval.SimpleMathCompare
Evaluate the expression and return true if true.
evaluate(Character, Character, String) - Method in class org.ai_heuristic.eval.SimpleMathCompare
Evaluate the expression and return true if true.
evaluate(Long, Long, String) - Method in class org.ai_heuristic.eval.SimpleMathCompare
Evaluate the expression and return true if true.
evaluate(Float, Float, String) - Method in class org.ai_heuristic.eval.SimpleMathCompare
Evaluate the expression and return true if true.
evaluate(Double, Double, String) - Method in class org.ai_heuristic.eval.SimpleMathCompare
Evaluate the expression and return true if true.
evaluate(String, String, String) - Method in class org.ai_heuristic.eval.SimpleMathCompare
Evaluate the expression and return true if true.
evaluate(MetricDataset) - Method in class org.ai_heuristic.functs.activate.FunctionHardLimit
Return a value based on the function evaluation.
evaluate(double, double) - Method in class org.ai_heuristic.functs.activate.FunctionHardLimit
Return a value based on the function evaluation.
evaluate(MetricDataset) - Method in class org.ai_heuristic.functs.activate.FunctionLinear
Return a value based on the function evaluation.
evaluate(double) - Method in class org.ai_heuristic.functs.activate.FunctionLinear
Return a value based on the function evaluation.
evaluate(MetricDataset) - Method in class org.ai_heuristic.functs.activate.FunctionLinearPlus
Return a value based on the function evaluation.
evaluate(double, double, double) - Method in class org.ai_heuristic.functs.activate.FunctionLinearPlus
Return a value based on the function evaluation.
evaluate(MetricDataset) - Method in class org.ai_heuristic.functs.activate.FunctionLinearRectified
Return a value based on the function evaluation.
evaluate(double) - Method in class org.ai_heuristic.functs.activate.FunctionLinearRectified
Return a value based on the function evaluation.
evaluate(MetricDataset) - Method in class org.ai_heuristic.functs.activate.FunctionSigmoid
Return a value based on the function evaluation.
evaluate(double) - Method in class org.ai_heuristic.functs.activate.FunctionSigmoid
Return a value based on the function evaluation.
evaluate(MetricDataset) - Method in class org.ai_heuristic.functs.activate.FunctionSymmetricHardLimit
Return a value based on the function evaluation.
evaluate(double, double) - Method in class org.ai_heuristic.functs.activate.FunctionSymmetricHardLimit
Return a value based on the function evaluation.
evaluate(MetricDataset) - Method in class org.ai_heuristic.functs.activate.FunctionTanH
Return a value based on the function evaluation.
evaluate(double) - Method in class org.ai_heuristic.functs.activate.FunctionTanH
Return a value based on the function evaluation.
evaluate(MetricDataset) - Method in class org.ai_heuristic.functs.Function
Return a value based on the function evaluation.
evaluate(MetricDataset, MetricDataset) - Method in class org.ai_heuristic.functs.FunctionMetric
Evaluate the comparison between the two datasets and return the result.
evaluate(MetricDataset) - Method in class org.ai_heuristic.functs.FunctionSingle
Return a value based on the function evaluation.
evaluate(MetricDataset) - Method in class org.ai_heuristic.functs.learn.FunctionConstantFactor
Return a value based on the function evaluation.
evaluate(double) - Method in class org.ai_heuristic.functs.learn.FunctionConstantFactor
Return a value based on the function evaluation.
evaluate(MetricDataset) - Method in class org.ai_heuristic.functs.learn.FunctionCount
Return a value based on the function evaluation.
evaluate(double, double) - Method in class org.ai_heuristic.functs.learn.FunctionCount
Return a value based on the function evaluation.
evaluate(MetricDataset) - Method in class org.ai_heuristic.functs.learn.FunctionExponentialFactor
Return a value based on the function evaluation.
evaluate(double, double, double) - Method in class org.ai_heuristic.functs.learn.FunctionExponentialFactor
Return a value based on the function evaluation.
evaluate(MetricDataset) - Method in class org.ai_heuristic.functs.learn.FunctionGaussFactor
Return a value based on the function evaluation.
evaluate(double, double) - Method in class org.ai_heuristic.functs.learn.FunctionGaussFactor
Return a value based on the function evaluation.
evaluate(MetricDataset) - Method in class org.ai_heuristic.functs.learn.FunctionHyperbolicFactor
Return a value based on the function evaluation.
evaluate(double, double, double) - Method in class org.ai_heuristic.functs.learn.FunctionHyperbolicFactor
Return a value based on the function evaluation.
evaluate(MetricDataset, MetricDataset) - Method in class org.ai_heuristic.functs.metric.CityBlockDistance
Evaluate the comparison between the two data lists and return the result.
evaluate(double[], double[]) - Method in class org.ai_heuristic.functs.metric.CityBlockDistance
Evaluate the comparison between the two data lists and return the result.
evaluate(MetricDataset, MetricDataset) - Method in class org.ai_heuristic.functs.metric.CosineSimilarity
Evaluate the comparison between the two data lists and return the result.
evaluate(double[], double[]) - Method in class org.ai_heuristic.functs.metric.CosineSimilarity
Evaluate the comparison between the two data lists and return the result.
evaluate(MetricDataset, MetricDataset) - Method in class org.ai_heuristic.functs.metric.EuclideanDistance
Evaluate the comparison between the two data lists and return the result.
evaluate(double[], double[]) - Method in class org.ai_heuristic.functs.metric.EuclideanDistance
Evaluate the comparison between the two data lists and return the result.
evaluate(MetricDataset, MetricDataset) - Method in class org.ai_heuristic.functs.metric.JaccardCoefficient
Evaluate the comparison between the two data lists and return the result.
evaluate(String[], String[]) - Method in class org.ai_heuristic.functs.metric.JaccardCoefficient
Evaluate the comparison between the two data lists and return the result.
evaluate(MetricDataset, MetricDataset) - Method in class org.ai_heuristic.functs.metric.MinkowskiDistance
Evaluate the comparison between the two data lists and return the result.
evaluate(double[], double[], int) - Method in class org.ai_heuristic.functs.metric.MinkowskiDistance
Evaluate the comparison between the two data lists and return the result.
evaluate(Object) - Method in class org.ai_heuristic.functs.similar.DemerauLevenshtein
Return a value based on the function evaluation.
evaluate(MetricDataset, MetricDataset) - Method in class org.ai_heuristic.functs.similar.DemerauLevenshtein
Evaluate the comparison between the two data lists and return the result.
evaluate(String, String) - Method in class org.ai_heuristic.functs.similar.DemerauLevenshtein
Return a value based on the function evaluation.
evaluate(Object) - Method in class org.ai_heuristic.functs.similar.Hamming
Return a value based on the function evaluation.
evaluate(MetricDataset, MetricDataset) - Method in class org.ai_heuristic.functs.similar.Hamming
Evaluate the comparison between the two data lists and return the result.
evaluate(String, String) - Method in class org.ai_heuristic.functs.similar.Hamming
Return a value based on the function evaluation.
evaluate(MetricDataset, MetricDataset) - Method in class org.ai_heuristic.functs.similar.IndexSimilarity
Evaluate the comparison between the two data lists and return the result.
evaluate(String[], String[]) - Method in class org.ai_heuristic.functs.similar.IndexSimilarity
Evaluate the comparison between the two data lists and return the result.
evaluate(Object) - Method in class org.ai_heuristic.functs.similar.JaroWinkler
Return a value based on the function evaluation.
evaluate(MetricDataset, MetricDataset) - Method in class org.ai_heuristic.functs.similar.JaroWinkler
Evaluate the comparison between the two data lists and return the result.
evaluate(String, String) - Method in class org.ai_heuristic.functs.similar.JaroWinkler
Return a value based on the function evaluation.
evaluate(Object) - Method in class org.ai_heuristic.functs.similar.Levenshtein
Return a value based on the function evaluation.
evaluate(MetricDataset, MetricDataset) - Method in class org.ai_heuristic.functs.similar.Levenshtein
Evaluate the comparison between the two data lists and return the result.
evaluate(String, String) - Method in class org.ai_heuristic.functs.similar.Levenshtein
Return a value based on the function evaluation.
evaluate(MetricDataset) - Method in class org.ai_heuristic.functs.test.SimpleFunction
Return a value based on the function evaluation.
EvaluateBase - Class in org.ai_heuristic.eval
Provides some base evaluation functions.
EvaluateBase() - Constructor for class org.ai_heuristic.eval.EvaluateBase
Create a new instance of Evaluate.
evaluateCompare(MetricCompare) - Method in class org.ai_heuristic.functs.FunctionMetric
Return a value based on the function evaluation.
EvaluateMathDef - Interface in org.ai_heuristic.def
This defines the methods that should be implemented by an evaluator of mathematical operations if they are typically comparisons or operations between two or more values.
evaluateSingle(MetricDataset) - Method in class org.ai_heuristic.functs.FunctionSingle
Return a value based on the function evaluation.
evaluator - Variable in class org.ai_heuristic.tree.KD_TreeNode
For comparing tree values.
EVALUATOR - Static variable in class org.ai_heuristic.util.AiHeuristicConst
 
exp(int) - Static method in class org.ai_heuristic.functs.MathStat
Calculate the value of e raised to the power of power.
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Skip navigation links